按提交时间
按主题分类
按作者
按机构
  • Gravitational signal propagation in the Double Pulsar studied with the MeerKAT telescope

    分类: 天文学 >> 天体物理学 提交时间: 2023-02-21

    摘要: The Double Pulsar, PSR J0737-3039A/B, has offered a wealth of gravitational experiments in the strong-field regime, all of which GR has passed with flying colours. In particular, among current gravity experiments that test photon propagation, the Double Pulsar probes the strongest spacetime curvature. Observations with MeerKAT and, in future, the SKA can greatly improve the accuracy of current tests and facilitate tests of NLO contributions in both orbital motion and signal propagation. We present our timing analysis of new observations of PSR J0737-3039A, made using the MeerKAT telescope over the last 3 years. The increased timing precision offered by MeerKAT yields a 2 times better measurement of Shapiro delay parameter s and improved mass measurements compared to previous studies. In addition, our results provide an independent confirmation of the NLO signal propagation effects and already surpass the previous measurement from 16-yr data by a factor of 1.65. These effects include the retardation effect due to the movement of B and the deflection of the signal by the gravitational field of B. We also investigate novel effects which are expected. For instance, we search for potential profile variations near superior conjunctions caused by shifts of the line-of-sight due to latitudinal signal deflection and find insignificant evidence with our current data. With simulations, we find that the latitudinal deflection delay is unlikely to be measured with timing because of its correlation with Shapiro delay. Furthermore, although it is currently not possible to detect the expected lensing correction to the Shapiro delay, our simulations suggest that this effect may be measured with the full SKA. Finally, we provide an improved analytical description for the signal propagation in the Double Pulsar system that meets the timing precision expected from future instruments such as the full SKA.

  • The interstellar medium distribution, gas kinematics, and system dynamics of the far-infrared luminous quasar SDSS J2310+1855 at $z=6.0$

    分类: 天文学 >> 天文学 提交时间: 2023-02-21

    摘要: We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C ii], CO (98), and OH+ (1101) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 at z = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [C ii] and CO (98) lines and the dust continuum with two-dimensional elliptical Srsic models. The [C ii] brightness follows a flat distribution with a Srsic index of 0.59. The CO (98) line and the dust continuum can be fit with an unresolved nuclear component and an extended Srsic component with a Srsic index of 1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [C ii] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [C ii] line, especially in the galaxy center, significantly suppressing the [C ii] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+ (1101) line shows a P-Cygni profile with an absorption at 400 km/s, which may indicate an outflow with a neutral gas mass of (6.2 1.2) 108 M along the line of sight. We employed a three-dimensional tilted ring model to fit the [C ii] and CO (98) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [C ii] and CO (98) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [C ii] and CO (98) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [C ii] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51 0.77 109 M ; this is the first time that the dynamical mass of a black hole has been measured at z 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109 M ) may have already existed when the Universe was only 0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy.

  • Discovery of non-metastable ammonia masers in Sagittarius B2

    分类: 天文学 >> 星系和宇宙学 提交时间: 2023-02-21

    摘要: We report the discovery of widespread maser emission in non-metastable inversion transitions of NH_3 toward various parts of the Sagittarius B2 molecular cloud/star forming region complex: We detect masers in the J,K= (6,3), (7,4), (8,5), (9,6), and (10,7) transitions toward Sgr B2(M) and Sgr B2(N), an NH_3 (6,3) maser in Sgr B2(NS), and NH_3 (7,4), (9,6), and (10,7) masers in Sgr B2(S). With the high angular resolution data of the Karl G. Jansky Very Large Array (JVLA) in A-configuration we identify 18 maser spots. Nine maser spots arise from Sgr B2(N), one from Sgr B2(NS), five from Sgr B2(M), and three in Sgr B2(S). Compared to our Effelsberg single dish data, the JVLA data indicate no missing flux. The detected maser spots are not resolved by our JVLA observations. Lower limits to the brightness temperature are >3000~K and reach up to several 10^5~K, manifesting the lines' maser nature. In view of the masers' velocity differences with respect to adjacent hot molecular cores and/or UCH{\scriptsize II} regions, it is argued that all the measured ammonia maser lines may be associated with shocks caused either by outflows or by the expansion of UCH{\scriptsize II} regions. Overall, Sgr B2 is unique in that it allows us to measure many NH_3 masers simultaneously, which may be essential to elucidate their so far poorly understood origin and excitation.